Перейти к содержимому


Технологии


  • Авторизуйтесь для ответа в теме
Сообщений в теме: 569

#561 Друид

Друид
  • Пользователи
  • 1 862 сообщений

26 мая 2021 - 05:39

Все что связано с графеном это хайп или провокация, пленку не получили, пока нано чешуя и математика, везде где написано " графен" типа краска, покрытие это спикуляция и обман, если втюхивают продукт, бейте в харю немедля!!
  • 1

#562 rabbit

rabbit
  • Пользователи
  • 7 597 сообщений

02 июня 2021 - 05:43

Китай установил новый рекорд продолжительности термоядерного синтеза — 101 секунда при 120 млн градусов
 

По сообщению китайских источников, опытный термоядерный реактор HL-2M Tokamak в научном центре Чэнду установил абсолютный мировой рекорд по продолжительности искусственной термоядерной реакции. При температуре 120 млн °C реакция поддерживалась 101 секунду. Установленный корейцами предыдущий рекорд — 20 секунд при 100 млн °C — побит окончательно и бесповоротно. Новые открытия не за горами.

 
china_termo.jpg

 

 

  HL-2M Tokamak. Вид изнутри. Источник изображения: IPP

Реактор HL-2M принят в эксплуатацию в декабре прошлого года. Новая установка позволила в три раза поднять температуру в рабочей зоне, где в магнитных полях удерживается разогретая плазма. Установка позволяет нагревать плазму до 150 млн °C и даже выше. С нагревом плазмы до 160 млн °C реактор работал 20 секунд. Представляется маловероятным, что кто-то в ближайшее время сможет побить поставленные в Китае рекорды.

На основе проекта HL-2M, который также носит название EAST (Experimental Advanced Superconducting Tokamak), предполагается собрать научные данные для создания прототипа промышленного термоядерного реактора к 2035 году, начало строительства которого запланировано на текущий год, и создать полноценную индустрию термоядерной энергетики в Китае к 2050 году. Ожидается, что HL-2 позволит удерживать разогретую до 100 млн °C плазму в течение 1000 секунд (примерно 17 минут).

 

 
fusion_china.jpg

 

Установка в сборе. Источник изображения: STR/AFP

Также опыты на HL-2M помогут получить ценную информацию для запуска и эксплуатации термоядерного реактора ITER, который содружество стран строит на юге Франции. Завершение строительства реактора ITER ожидается к 2025 году с выводом на полную мощность к 2035 году.

 

Источник: newatlas.com


Сообщение отредактировал rabbit: 02 июня 2021 - 05:43

  • 1

#563 rabbit

rabbit
  • Пользователи
  • 7 597 сообщений

21 июня 2021 - 12:01

В Японии нашли способ снизить стоимость «зеленого» водорода на две трети
 
С 10 до 3 долларов за килограмм
Японские компании Eneos и Chiyoda намерены построить завод, который будет производить водород без выбросов углекислого газа и всего за одну треть нынешних затрат на производство водорода. Ожидается, что это станет прорывом в стремлении страны к декарбонизации.
 
Завод будет использовать запатентованную технологию электролиза, которая позволит значительно снизить необходимые инвестиции. Целью предприятия является снижение цены на водород примерно до 3 долларов за килограмм. Eneos и Chiyoda рассматривают Австралию и другие регионы в качестве кандидатов на строительство завода в 2030 году.
 
Водород, который может приводить в движение автомобили и турбины электростанций без образования CO2, жизненно необходим для декарбонизации, но производственные затраты на его получение остаются высокими. Сейчас водород на японском рынке стоит примерно 10 долларов за килограмм. Правительство стремится снизить эту цифру до 3 долларов к 2030 году, а со временем — до 2 долларов.
 
Метод, разработанный Eneos и Chiyoda, обеспечивает электролиз воды и толуола одновременно, а не посредством отдельных процессов, с образованием метилциклогексана (C7H14). Такое упрощение процесса вдвое сокращает капиталовложения в оборудование.
 
Жидкий C7H14 будет поставляться при температуре окружающей среды на электростанции и другие объекты, где из него будет добываться водород для получения энергии. Это намного более рентабельно, чем доставка водорода, который необходимо транспортировать при температуре -253 °C в специальной емкости.
 
У партнеров уже есть технология производства ограниченного количества C7H14, и теперь они будут работать над увеличением мощности за счет использования электродов большего размера. К 2025 финансовому году они рассчитывают разработать установку мощностью 500 кВт.
 
Электроэнергию, необходимую для электролиза, планируется получать из возобновляемых источников. В частности, Австралия поставляет такую ??энергию по невысокой цене. Для установки электролизного оборудования и резервуара для хранения требуется примерно 1 км2. Вместе с солнечной электростанцией, необходимой в качестве источника электроэнергии, производство займет 64 км2.
 
Японское правительство поставило цель к 2030 году использовать в качестве источника энергии до 3 млн тонн водорода. Планируется, что из этого количества «зеленый» водород составит 420 000 тонн. Предполагается, что завод Eneos и Chiyoda сможет производить 300 000 тонн водорода в год. По энергетической ценности это примерно соответствует ядерному реактору.
 
Источник: asia.nikkei.com

 


  • 1

#564 rabbit

rabbit
  • Пользователи
  • 7 597 сообщений

04 июля 2021 - 03:44

Японские исследователи улучшили ионную металлизацию — это откроет путь к чипам нового поколения

 

Современные технологии нанесения тонких плёнок на кремний при производстве чипов ограничены в выборе материалов. Например, в плёнках из металлов возникает физическое напряжение, которое невозможно убрать для тугоплавких металлов и которое ведёт к появлению дефектов. Исследователи из Японии смогли решить эту проблему и предложили технологию, которая позволит создавать металлические плёнки на кристаллах без ограничений.

Традиционно физическое напряжение в тонкоплёночных металлических покрытиях в чипах снималось с помощью отжига — нагрева кристалла до температур, когда металл ещё не плавился, но размягчался достаточно, чтобы напряжение ушло. Если эти участки напряжения оставить, то со временем это привело бы к возникновению трещин и расколов, что вывело бы чип из строя. Но этот способ не годится для тонкоплёночных покрытий из тугоплавких металлов, нагревать которые для снятия напряжения необходимо до температур несовместимых с жизнью многих элементов кристалла. Наконец, нагревать — это дорого и сложно, что сказывается на себестоимости микросхем.
 
Впрочем, для нанесения тонких плёнок из тугоплавких металлов есть свой способ без создания существенного напряжения в плёнках — это импульсное магнетронное осаждение методом распыления (HiPIMS). Но в этом деле есть тонкость. Для равномерного осаждения на кристалл ионов «испаряемого» с мишени металла одновременно с импульсом HiPIMS на подложку требуется подать синхронизированный импульс смещения. Тогда напряжение в плёнках получается очень и очень низким и не требует последующего отжига.
 
Учёные из Токийского Столичного Университета предложили технологию импульсного магнетронного осаждения методом распыления без обычной подачи импульса смещения на подложку. Детально изучив процессы осаждения учёные определили, что импульс смещения необходимо подавать с небольшой задержкой. В их случае задержка составила 60 мкс, но этого оказалось достаточно, чтобы создать тонкую вольфрамовую плёнку с беспрецедентно низким напряжением 0,03 ГПа, что обычно достигается только при отжиге.
 
Эффективный способ получения пленок без напряжений окажет значительное влияние на процессы металлизации и производство чипов следующего поколения. Эта технология может быть применена к другим металлам и обещает большие выгоды для электронной промышленности.
 
Источник: eurekalert.org

  • 0

#565 rabbit

rabbit
  • Пользователи
  • 7 597 сообщений

10 августа 2021 - 18:44

Китайские учёные создали стекло, превосходящее алмаз по твёрдости

 

Китайские учёные представили новую форму стекла, достаточно прочную, чтобы поцарапать поверхность алмаза. Но самое удивительное, что новый материал сохранил полупроводниковые свойства аморфного стекла. Это открывает путь к предельно прочным фотоэлектрическим панелям и к электронике, выдерживающей экстремальные температуры и давление.

 

 

Прочность алмаза, как известно, обусловлена его идеальной кристаллической структурой. Стекло не имеет упорядоченной структуры и особенной прочностью похвастаться не может. Китайские исследователи смогли подобрать такие режимы нагрева и давления, которые придали стеклу необычайную прочность с сохранением свойств полупроводника.
 
В основе нового высокопрочного стекла лежат фуллерены — это что-то типа графена, свёрнутого в подобие футбольного мяча. Сами по себе фуллерены не обладают рекордной твёрдостью, но спечённые вместе они оказались прочнее алмаза. В процессе обычного нагрева до высоких температур под давлением фуллерены расплавляются, и на выходе получается обычный искусственный алмаз — диэлектрик, а вовсе не полупроводник.
 
Учёные растянули процесс нагрева и охлаждения образцов на 12 часов каждый, а температурные режимы годами подбирали шаг за шагом, чтобы сохранить фуллерены в материале целыми. При нагреве до 1200 °C под давлением 25 ГПа фуллерены удалось сохранить в материале целыми. Новый материал получил название AM-III. Под микроскопом такой материал выглядит как кристаллическая структура, но при дальнейшем увеличении представляется неупорядоченным скоплением фуллеренов. Подобное сочетание сделало его прочнее алмаза.
 
При измерении твёрдости методом Виккерса материал AM-III показал твёрдость 113 ГПа. Для сравнения, алмазы природного происхождения имеют твёрдость от 70 до 100 ГПа, а сталь всего 9 ГПа. Статья об исследовании была опубликована в издании National Science Review. Эта работа появилась благодаря консультациям с профильными специалистами из Швеции, США, Германии и России.
 
Также было обнаружено, что материал AM-III является полупроводником с диапазоном запрещенной зоны от 1,5 до 2,2 эВ, что аналогично обычному аморфному кремнию. Такое сочетание электронных и механических свойств делает AM-III привлекательным решением для фотоэлектрических датчиков и солнечных батарей. Наконец, микросхемы из такого материала будут выдерживать чудовищные рабочие температуры и давления, что пригодится для космоса и авиации.
 
Источник: scmp.com

  • 0

#566 rabbit

rabbit
  • Пользователи
  • 7 597 сообщений

20 августа 2021 - 02:39

В Германии создали литийметаллический аккумулятор с рекордной плотностью хранения энергии — вдвое лучше литийионного

 

Исследователи из Института Гельмгольца в Ульме (HIU) опубликовали в журнале Joule статью, в которой рассказали о перспективной комбинации катода и электролита литийметаллического аккумулятора. Новое решение позволит выпускать аккумуляторы с рекордной плотностью 560 Вт·ч/кг, что вдвое превосходит современные литиевые аккумуляторы. Но это ещё не всё. Новые батареи сохраняют 88 % ёмкости даже после 1000 циклов заряда и разряда.

Давно не секрет, что литий-металлические аккумуляторы превосходят литийионные по плотности хранения энергии, но стабильность первых оставляет желать лучшего. В процессе заряда и разряда традиционные электроды с высоким содержанием кобальта покрываются микротрещинами, в которые проникает электролит и усугубляет разрушения. Необходимо было найти такое сочетание материалов электродов с электролитом, которое не вызывало бы разрушений батареи и потерю ёмкости
 
В ходе экспериментов выход был найден в особой слоистой структуре катода литийметаллического аккумулятора с низким содержанием кобальта. Фактически в материале нового катода было необычно высокое содержание никеля (NCM88). Также вместо традиционного электролита LP30 на основе органических соединений был взят нелетучий и негорючий жидкий электролит с двумя анионами (ILE). Сочетание NCM88-катода и электролита ILE показало себя крайне перспективным, позволив как добиться рекордной плотности хранения энергии, так и низкого износа аккумулятора в процессе работы.
 
 
Кулоновский КПД, который показывает соотношение между извлеченной и запасаемой мощностью, в среднем составил 99,94 %. «Поскольку представленная батарея также отличается высоким уровнем безопасности, — говорится в пресс-релизе учреждения, — исследователи из Карлсруэ и Ульма сделали важный шаг на пути к углеродно-нейтральной мобильности».
 
Источник: cell.com

  • 0

#567 rabbit

rabbit
  • Пользователи
  • 7 597 сообщений

24 августа 2021 - 06:53

Moderna объявила набор добровольцев для клинических испытаний мРНК-вакцины от ВИЧ
 

Американская компания Moderna, выпускающая м-РНК-вакцину против коронавируса, готовится к клиническим испытаниям двух вакцин от вируса иммунодефицита человека, изготовленных по той же технологии мРНК.

Компания набирает добровольцев для первой фазы рандомизированного испытания с участием людей. Во время него будут оценивать безопасность и иммуногенность (то есть способность антигена вызывать иммунный ответ) вакцин eOD-GT8 (мРНК-1644) и Core-g28v2 (мРНК-1644v2-Core) против ВИЧ.

Для испытания приглашаются неинфицированные взрослые с хорошим  здоровьем. Ученым нужно 56 добровольцев в возрасте от 18 до 50 лет.

Фармкомпания протестирует препараты вместе со специалистами из нескольких университетов, включая Техасский университет в Сан-Антонио и Университет Джорджа Вашингтон.

Предварительная дата начала исследования - 19 сентября 2021 года, а завершится оно 1 мая 2023 года.

Если мРНК-вакцины окажутся безопасными, их будут дополнительно тестировать уже на предмет степени эффективности.

 

Источник: clinicaltrials.gov


Сообщение отредактировал rabbit: 24 августа 2021 - 06:53

  • 0

#568 rabbit

rabbit
  • Пользователи
  • 7 597 сообщений

25 августа 2021 - 02:03

Учёные создали память, которая светится каждой ячейкой в зависимости от её состояния — это раздвинет горизонты оптоэлектроники

 

Японские учёные вместе с коллегами с Тайваня создали ячейку резистивной памяти ReRAM, состояние которой можно считывать одновременно электрическими и оптическими сигналами. Создать компактное устройство «два в одном» помог перовскит, слой которого как проводил электроны и удерживал заряд, так и излучал фотоны. Подобное свойство позволит увеличить производительность подсистемы памяти за счёт разделения задач и поможет в технологиях шифрования.

 

 

В принципе создать ячейку памяти для одновременного хранения и передачи данных электрическим способом и для сигнализации о состоянии ячейки излучением фотонов — это дело нехитрое. Учёные из Национального Тайваньского педагогического университета и Университета Кюсю поставили перед собой цель создать такую ячейку памяти в виде условно монолитного устройства, а не составного — из светодиодов и ячеек памяти. Помочь в этом смог перовскит в виде соединения бромида цезия-свинца (CsPbBr).
 
В результате исследования, о котором сообщается в издании Nature Communications, получилась компактная ячейка памяти ReRAM, о состоянии которой сообщается вспышками в реальном времени параллельно с операциями с памятью. Более того, используя в слое перовскита квантовые точки разного размера, учёным удалось обеспечить разноцветную индикацию режимов записи и стирания (синюю и зелёную), фактически повторяя вспышками процесс работы ячейки по передаче данных.
 
 
Дублирование электрических сигналов в памяти оптической индикацией в одном компактном устройстве открывает возможность увеличения производительности работы памяти ReRAM за счёт распараллеливания части процессов. В обычной ячейке памяти ReRAM для её работы необходимо измерять сопротивление резистивного слоя и делать ряд других сопутствующих электрических измерений, от которых «память со световой индикацией» освобождается. Когда-нибудь это может пригодиться, ведь фотоника становится важной частью новой электроники.
 
Источник: newatlas.com

  • 0

#569 rabbit

rabbit
  • Пользователи
  • 7 597 сообщений

25 августа 2021 - 02:05

Создан суперконденсатор размером с пылинку, который выдаёт напряжение как у пальчиковой батарейки

 

Немецкие химики создали самый маленький в мире суперконденсатор, выходное напряжение на котором сравнимо с напряжением обычных элементов форм-фактора AA. Более того, суперконденсатор заряжается от такого природного электролита, как кровь человека. Это открывает путь к встроенным в тело автономным медицинским датчикам, что изменит подход к диагностированию и лечению заболеваний, включая онкологические.

 

 

Современные суперконденсаторы удаётся выпускать размерами около 3 мм3. Химики из Хемницкого технического университета (Chemnitz University of Technology) представили технологию изготовления наносуперконденсаторов (nBSC) объёмом 0,001 мм3 или в 3000 раз меньше. При этом напряжение на конденсаторе достигает 1,6 В, хотя токи, конечно, очень и очень маленькие.
 
В среднем схема питания с использованием суперконденсаторов nBSC выдаёт около 100 нА. Этого достаточно для работы миниатюрных датчиков, которые вводятся прямо в кровеносные сосуды. Например, исследователи спроектировали и испытали датчик измерения кислотности крови с питанием от nBSC. Важно отметить, что суперконденсаторы не только часами удерживали заряд в потоке крови, но также использовали кровь как электролит, заряжаясь и разряжаясь тысячи циклов.
 
 
Чтобы суперконденсатор мог использовать кровь, плазму или физраствор в качестве электролита он изготовлен трубчатым (полым). Кровь проходит сквозь конденсатор и создаёт поток электронов в его обкладках. Интересно, что суперконденсатор изготавливается плоским из нескольких слоёв золота (электроды), мембраны и полимерной оболочки, которые затем сами сворачиваются в трубочку с помощью специальной технологии напряжения материала.
 
Источник: newatlas.com

  • 0

#570 rabbit

rabbit
  • Пользователи
  • 7 597 сообщений

30 августа 2021 - 01:08

Учёные вырастили «графен» из бора, что открывает новые горизонты для электроники и аккумуляторов

 

Теоретики давно предсказали существование плёночных форм бора атомарной толщины — борофенов. Но на практике вырастить однослойный борофен оказалось на порядки сложнее, чем получить графен. Мечты создать многослойный борофен с возможностью межслойного накопления энергии и вовсе казались фантастикой.

 
Однако учёные смогли получить условия выращивания двухслойного борофена, хотя это произошло совершенно случайно. В опубликованной на днях в издании Nature Materials статье группа учёных из американского Северо-Западного университета сообщила о выращивании образцов двухслойного борофена. Секрет крылся в выборе правильной подложки для процесса.
 
 
Для производства графена можно использовать простейшие способы, включая атомарно тонкое отслоение с помощью плёнки с липким слоем. Борофен таким образом отделить нельзя. Его структура более прочная и атомарно тонкий слой можно лишь вырастить на специальной подложке. Более того, все попытки вырастить двухслойный борофен заканчивались провалом — вместо второго слоя образовывались объёмные скопления бора в виде монокристаллической структуры.
 
В одном из своих экспериментов с подложками для выращивания борофена учёные из Северо-Западного университета использовали серебро, которое подвергли нагреву до определённой температуры. Получившаяся подложка выглядела как каскад террас с относительно большой площадью каждая. В ходе опыта выяснилось, что на такой подложке борофен сформировался в виде двух аккуратных слоёв. Этого никто не ожидал, но все были приятно удивлены — нашлось то, о чём давно мечтали.
 
Двухслойный борофен в теории лучше подходит для аккумуляторов будущего, чем графен. Он более прочный, гибкий и лёгкий. Расстояние между двумя слоями борофена хорошо подходит для удержания ионов и накопления энергии. Этот материал обещает упростить структуру батарей и снизить их вес. Учёные рассчитывают, что смогут изучить открывшиеся возможности для получения борофена в объёмах, которые позволят выявить его свойства и, в итоге, приблизить возможность практического применения.
 
Источник: hpcwire.com

Сообщение отредактировал rabbit: 30 августа 2021 - 01:08

  • 0